Topological polymorphism of nucleosome fibers and folding of chromatin

Victor Zhurkin and Davood Norouzi

Pavel Burmistrov

MSU 24.02.2021

Solenoid and zigzag model

Paradigm shift

Liquid phase separation

Model updates from experimental data

Topological polymorphism of chromatin fibers

SV40 minichromosome

1 negative superhelical turn per nucleosome

'DNA linking number paradox"

1.6–1.7 negative turns expected

Lk - linking number

Tw - DNA twisting

Wr - writhing

dLk = dTw + Wr

T1 and T2 types

Nucleosome spacing and the level of transcription

T1 $\Delta Lk \approx -1.5$ $\Delta Lk \approx -1$

weak supercoiling

predominantly downstream

highly transcribed genes

{10n+5}

T2

stabilized in the upstream regions

regions with a low level of transcription

{10n}

yeast genes from the top and bottom 25% of the expression level scale

NRL ~ 161 bp	NRL ~ 167 bp
<l> = 14 bp</l>	<l> = 20 bp</l>

{10n}

low superhelical density

higher superhelical density

greater plasticity

higher stability of the chromatin fiber

facilitation of gene loops formation

and enhancer-promoter loops

prevalent for inactive genes

Conformational dynamics of chromatin fibers and nucleosome spacing

T2: NRL = 187 bp

T1: NRL = 182 bp

Radioprobing DNA folding in situ and topological state of chromatin

Conclusion

in vitro

The {10n+5} but not {10n} nucleosome arrays have a strong propensity for macroscopic self-association in vitro , which can be explained by more pronounced flexibility of the T1 topoisomer

Genome-wide DNA cleavage induced by ionizing radiation, RICC-seq, was shown to reflect the spatial proximity of nucleosomes in chromatin fibers. The DNA cleavage pattern depends on the fiber configuration (i.e., T1 or T2); at the same time, it can be linked to the epigenetic maps of the active and repressed states of chromatin.

in vivo

Micro-C and Hi-CO experiments revealed various structural motifs characterized by distinct nucleosome folding in vivo, from yeast to humans

in silico Authors, Monte Carlo (MC)