Life Sciences

1

Student: *Pavel Burmistrov* Research Advisor: *Ekaterina Khrameeva Co-Advisor: Alexey Shaytan*

Skoltech

March, 2021

In the 2016 article by Ulianov et al. the following hypothesis was suggested: acetylation of histone tails affects chromatin structure and accessibility. Specifically, acetylated gene-rich segments of chromatin form less compact structures, non-acetylated chromatin regions form compact regions - TADs.

Ulianov, Sergey V et al. "Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains." *Genome research* vol. 26,1 (2016): 70-84. doi:10.1101/gr.196006.115

Zhurkin VB, Norouzi D. Topological polymorphism of nucleosome fibers and folding of chromatin. Biophys J. 2021 Feb 16;120(4):577-585. doi: 10.1016/j.bpj.2021.01.008. Epub 2021 Jan 16. PMID: 33460599.

3

Skoltech

It is natural to proceed with hypothesis validation at a higher resolution in two ways.

C-TALE experiments will provide better resolution for experimental data.

Coarse-grained molecular dynamics modelling will allow us to observe the effect of acetylation on nucleosomal density at resolution of single nucleosomes

Pablo D Dans, Multiscale simulation of DNA, Current Opinion in Structural Biology, Volume 37, 2016, Pages 29-45

Machado, Matías R et al. "From quantum to subcellular scales: multi-scale simulation approaches and the SIRAH force field." Interface focus vol. 9,3 (2019): doi:10.1098/rsfs.2018.0085

Background SIRAH forcefield

- Top-down approach
- Highly sensitive
- WT4 water model
- Built-in acetylation mapping

C5'

C1'

cytosine

Aim and objectives

Aim

Compare and analyse Hi-C and C-TALE experimental data versus coarse-grained molecular modelling to estimate the effect of histone acetylation on chromatin density at multiscale resolution

Objectives

- Coarse-grained modelling
- Analysis of the modelling results
- Comparison of modelling results vs Hi-C and C-TALE

Methods

Genomic data processing • HiGlass

MD simulations • GROMACS

- SIRAH force field
- Newton cluster
- Arcuda cluster

Results

Literature and database analysis of MNAse-seq and ATAC-seq data of different cell lines

- Selected dm3 genome assembly regions
- Selected histone acetylation cites

GAL4 induces transcriptionally active puff in the absence of dSAGA- and ATAC-specific chromatin acetylation in the Drosophila melanogaster polytene chromosome Published online 2016 Sep 27. doi: 10.1186/s13059-016-1057-2

PMID: 27678375

Genome-wide identification of *Drosophila* dorso-ventral enhancers by differential histone acetylation analysis Nina Koenecke,^{#1} Jeff Johnston,^{#1} Bjoern Gaertner,^{1,2} Malini Natarajan,¹ and Julia Zeitlinger^{II,3}

Anita Ciurciu¹, István Tombácz, Cristina Popescu, Imre Boros

Affiliations + expand PMID: 19412618 DOI: 10.1007/s00412-009-0215-7

Spatially uniform establishment of chromatin accessibility in the early *Drosophila* embryo

Jenna E. Haines, D Michael B. Eisen doi: https://doi.org/10.1101/195073

Results

MD system preparation

Atomic representation

- Nucleotide sequence
- Histone octamer

PDB files assembled and preprocessed

Successful main run on dinusleosome system

Coarse-grained molecular modelling script pipeline validated

Results

- Linker length 35 to 95 bp
- Energy minimization: steepest descent gradient method 10000 steps with POSRED constraints
- Equilibration 100 ps with positional restraints of 500 kJ/mol/ A2 and 0.5 fs time step
- Equilibration 200 ps with positional restraints of 50 kJ/mol/A2
- Equilibration 200 ps with positional restraints of 5 kJ/mol/A2
- Equilibration 200 ps with postional restraints of 0.5 kJ/mol/A2
- Main run duration 50 000 000 steps = 1 microsecond

Results			
chr21 : 1 450 000	chr21:1.500.000	chr21 · 1 450 000	cbr21 · 1 500 000
Cur 0 log Z diff bitile	1		
Cur0 dm3 mapg _30 1000 ins log2 hitile		HDAC0.dm3.mapg_30_1000.ins.log2.hitile	0
Cur 0.acetyl.log:Z.hitile	·	HDAC 0.acetyl.log.Z.hitile	
	1e+2 = 10 - 1 -		1e+2 - 10 -
the set of	0.1 -		
			0.1 -
a di kana di Kana da ka	0.01 -		0.01 -
and the second secon	0.001 -		0.001 -
			5 6 F.
	20 E L 3		5 H. H.
	Cur.dm3.mapq_30.1000.mcool [Current data resolution: 2k]		HDAC.dm3.mapq_30.1000.mcool [Current data resolution: 2k]

Plans

Skoltech

Computational time evaluation

	baseline system	Zhang, 2017	Kameda, 2019
simulation	70 ns	100 ns	100 ns
actual time	~ 4 days		

~ 17 ns/day

less than ~20 days in total

Analysis metrics

Method	Resolution	Metric to measure acetylation effect
Hi-C	5 - 20 kbp	chromatin density - insulation score for 3 cases
C-TALE	expected higher than Hi-C	chromatin density - insulation score for 3 cases
Coarse-grained modelling	near-atomic	C-alpha RMSD H4 tail - acidic patch binding

Skoltech

MD analysis metrics

- Center mass of nucleosomes distance
- Linker length geometry dependance
- Angles, rotation
- Histone tails acidic patch binding
- Electrostatic charge distribution

Conclusions

Multiscale validation of acetylation effect on chromatin structure

- Coarse-grained modelling
- Analysis of the modelling results
- Comparison of modelling results vs Hi-C and C-TALE

Estimation of specific acetylation cites contribution into chromatin spatial organisation

- Baseline no acetylation
- H4K16
- H3K9, 14, 18, 23, 27, H4K5, 8, 12

Alexey Shaytan, MSU, Leading Researcher

Grigoriy Armeev, MSU, PhD

Victoria Kobets, Skoltech, PhD

Skoltech

Hi-C protocol

20

C-TALE

Skoltech

Golov, A. K., et al. (2019). C-TALE, a new cost-effective method for targeted enrichment of Hi-C/3C-seq libraries. Methods. doi:10.1016/j.ymeth.2019.06.022

Discussion of results 1k

Discussion of results 5k

