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Abstract

Nuclear proteins bind chromatin to execute and regulate genome-templated
processes. While studies of individual nucleosome interactions have suggested
that an acidic patch on the nucleosome disk may be a common site for
recruitment to chromatin, the pervasiveness of acidic patch binding and
whether other nucleosome binding hot-spots exist remain unclear. Here, we
use nucleosome affinity proteomics with a library of nucleosomes that disrupts
all exposed histone surfaces to comprehensively assess how proteins recognize
nucleosomes. We find that the acidic patch and two adjacent surfaces are the
primary hot-spots for nucleosome disk interactions, whereas nearly half of the
nucleosome disk participates only minimally in protein binding. Our screen
defines nucleosome surface requirements of nearly 300 nucleosome interacting
proteins implicated in diverse nuclear processes including transcription, DNA
damage repair, cell cycle regulation and nuclear architecture. Building from our
screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome
directly engages the acidic patch, and we elucidate a redundant mechanism of
acidic patch binding by nuclear pore protein ELYS. Overall, our interactome
screen illuminates a highly competitive nucleosome binding hub and
establishes universal principles of nucleosome recognition.
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Scheme of
experiments

Nucleosome affinity proteomics. (A)
Electrostatic surface of nucleosome
generated with ABPS (PDBID: 3LZ0).
(B) Biotinylated nucleosome library
showing disk mutant patches and
histone tails truncated to make the
tailless nucleosome. (C) Nucleosome
affinity proteomics workflow.
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Nucleosome library design and preparation
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Nucleosome library and nucleosome affinity purification. (A)
Nucleosome views: electrostatic (left, generated with APBS),
colored by mutant disk patches (middle), and colored by histones
(right, two orthogonal views).



Mutation rules

- the mutations would collectively disrupt the entire histone disk surface allowing comprehensive
identification of nucleosome binding hot-spots;

- mutations would be restricted to surface-exposed side chains that are not anticipated to contribute
substantially to nucleosome structure or stability;

- residues selected would be significantly chemically altered by mutation to alanine or serine (e.g. Lys, Arg, Glu,
Asp, GIn, Asn);

- mutated residues would be equally distributed across a similar sized patch and

- each set of mutations would be similar in degree based on the number of atoms, hydrogen bond donors and

acceptors, and charged groups removed, allowing qualitative comparison of the relative contribution of each
patch to nucleosome binding.



Nucleosome affinity purification
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(C) and (D) Representative nucleosome affinity purification assays

run on 4-20% gradient gels showing increased and decreased nuclear protein
binding to the acidic patch neutralized mutant nucleosomes with only alanine
mutations (C), or a mix of alanine and serine mutations (D), respectively. Panel
D also shows increased binding to the tailless nucleosomes.
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(C) and (D) Network of
proteins with
experimentally-established
interactions with (C)
decreased

binding or (D) increased
binding to tailless
nucleosomes. Networks
created using STRING v11
and plotted with Cytoscape
v3.7.
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(C) and (D) Network of
proteins with
experimentally-established
interactions with (C)
decreased

binding or (D) increased
binding to tailless
nucleosomes. Networks
created using STRING v11
and plotted with Cytoscape
v3.7.
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Hot-spots for nucleosome
disk binding
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(C) Upset plot showing number of proteins with significant

decreases in subset of nucleosome pulldowns, marked below.
(D) Heat map of all significantly changed proteins, independently
clustered.
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Acidic patch-dependent nucleosome binding proteins
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Nucleosome disk binding
protein interaction
networks. Experimentally
established interactions
of all proteins (gene
names shown for brevity)
with decreased binding to
(A) Nuc1

Networks created using
STRING

v11 and plotted with
Cytoscape v3.7.

A Decreased binding to acidic patch mutant Nuc1 (all)
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C Decreased binding to Nuc1, Nuc2, and Nuc3 (all)
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APC/C is a direct nucleosome acidic
patch binder



e https://doi.org/10.1038/sj.0nc.1207973

l ‘l l l l l Temporal pattern of APCCdc20 and APCCdh1 regulation
@ ?" throughout the cell cycle. During G1 phase of the cell cycle,
APCCdh1 is an active complex. Once G1-cyclins accumulate
- |- - \._,/_’ (S’ (& e’ Cdh1 becomes phosphorylated and dissociates from the
o : - 2 APC. This phosphorylation will be maintained until
Cant Cant Cdnit
, Y. ® t anaphase. From G2 to prophase, free APC is kept inactive by
@ @ @D»aly P s % its inhibitor Emi1, which associates with Cdc20 and prevents
APC-Cdc20 binding. At late prophase, Emi1 is degraded and
Aetive \aacive actve nactve Acsve Retive RASSFA1 takes over the role of this inhibitor until late

prometaphase when the latter is also proteolysed. Free APC
is then phosphorylated by cyclin B/cdk1 and Plk1 kinases. At
[ Praphesetistaptiass. |— -] Ansphase Teiophess |'> < @ > metaphase, APCCdc20 is still maintained inactive through
direct binding of the checkpoint complex Mad2-Bub3-BubR’1
(except for cyclin A and Nek?2 proteolysis). Once the spindle
checkpoint is satisfied, the Mad2-Bub3-BubR1 complex is
dissociated from APCCdc20 and this ubiquitin-ligase
achieves its full activity, and induces degradation of securin
and initiation of cyclin B proteolysis. Continuous cyclin B
degradation present during anaphase will ensure a decrease
in cyclin B/cdk1 activity and a dephosphorylation of Cdh1,
which in turn, will induce activation of APCCdh1 and
degradation of Cdc20
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APC/C interacts directly with the nucleosome acidic
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ELYS binds to the nucleosome acidic
patch with redundant basic sequences.



doi: 10.1242/jcs. 194753
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Figure 5. ELYS binds the acidic patch using redundant basic sequences. (A) Y-complex composition with proteins identified to be acidic patch-dependent
by mass spectrometry and/or western blot indicated. (B) Schematic of ELYS indicating functional regions and ELYS® sequence with Arg and Lys mutated
to Ala in ELYSCx1-x6. (C) Pulldown of ELYS® by WT or acidic patch mutant (AP mut) FLAG-tagged nucleosomes alone or with WT or nucleosome-
binding deficient mutant of LANA (LANA mut) added as a competitor. (D) Pulldown of ELYS® or ELYS® mutants by WT and AP mut nucleosomes.
Flowthrough in panels C and D demonstrate equivalent loading of ELYS or LANA variants, respectively.
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ELYS nucleosome binding regions are critical for
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DISCUSSION

Acidic patch is the primary hot-spot for nucleosome binding that remarkably
drives >50% of nucleosome interactions

Two adjacent nucleosome patches mutated in Nuc2 and Nuc3 also contribute
to nucleosome binding but almost entirely in an acidic patch-dependent
context with larger impairments observed for the acidic patch mutant Nuc1 in
nearly all cases.

Nucleosome acidic patch binding commonly uses arginine anchors in both a
canonical as well as variant locations

24
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Nucleosome disk interaction hot-spots facilitate chromatin-templated processes. (A) Overview of nucleosome
interactome screen results indicating number and percentage of identified proteins with decreased binding to
nucleosomes containing mutations in each of the five nucleosome disk patches. (B) Schematic illustrating how
competitive nucleosome disk binding combines with locus-specific chromatin recruitment to facilitate
chromatin-templated processes.
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DISCUSSION

- The canonical arginine anchor-binding cavity includes H2A residues E61, D90
and E92, two of which were mutated in Nuc1

- We suspect that some of the binding deficits in Nuc2 may actually reflect
variant arginine anchors binding at the edge of the acidic patch in the vicinity
of Nuc2 mutations of H2AQ24 and H2BQ47, E113 and K116.

- Nuc4, Nuc5 - comprise highly conserved H3 and H4 residues in region and
may play specific roles in the nucleosome binding and function of a small
subset of proteins (that have been previously implicated in transcriptional
regulation in yeast)

- we observed large gains in protein binding to tailless nucleosomes,suggestive
of more non-specific binding to nucleosomal and linker DNA that are typically
shielded by the histone tails 26



Comparison with BioGRID

Of the 2142 histone interacting proteins in the BioGRID database, 485 were
included in our dataset, accounting for 76% of the proteins we identified and 23%
of the BioGRID-identified histone interactors. As exemplified by APC/C and the
Y-complex, our screen did not always identify every protein component of a
nucleosome binding complex.

We find that 85% of the proteins identified in our study are histone interactors or
coexist in a complex (data from CORUM) with a histone interactor from the
BioGRID database; conversely, 45% of BioGRID histone interactors were either
identified in our screen or coexist in a protein complex with a protein identified in
our screen.
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Unknown nucleosome binders

Demonstrated that one unexpected
complex, the APC/C, binds directly to
the nucleosome in an acidic
patch-dependent manner

A apcie APCIC

patch 1+2-dependent by:
*mass spectrometry
#western blot

* #
Apcis APCS

Elucidate a redundant mechanism of
acidic patch binding by nuclear pore
protein ELYS

Y-complex

acidic patch-dependent by:
*mass spectrometry
#western blot
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