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MMase - endonuclease cuts n inkers

MNase seq data
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Nucleosomes often undergo extensive rearrangement when genes are activated for transcription.

It was shown previously, using paired-end sequencing of yeast nucleosomes, that major changes in chromatin
structure occur when genes are activated by 3-aminotriazole (3AT), an inducer of the transcriptional activator
Gen4.

At the genomic level, nucleosomes are reqularly phased relative to the transcription start site.

However, for a subset of 234 strongly induced genes, this phasing is much more irreqular after induction,
consistent with the loss of some nucleosomes and the re-positioning of the remaining nucleosomes.

DAC analysis of the 3AT-induced genes suggests that transcription activation coincides with rearrangement of
nucleosomes into irreqgular arrays with longer spacing.

Sequence analysis of the +1 nucleosomes belonging to the 45 most strongly activated genes reveals a distinctive
periodic oscillation in the A/T-dinucleotide occurrence that is present throughout the nucleosome and extends
into the linker. This unusual pattern suggests that the +1 nucleosomes might be prone to sliding, thereby
facilitating transcription.



Assembly of the nucleosome core particle. (A) Association of the (H3/H4)2 tetramer with DNA nucleates nucleosome ssembly
and defines the dyad axis. (B) H2A/H2B dimer. (C) Two H2A/H2B dimers are deposited to generate the nucleosome ore particle.
H3 N-terminal tails emerge near the DNA entry/exit points (based on data reported under PDB accession number 1KX5).

Linker DNA

Histone H1 associates with linker DNA. (A) The globular domain of histone H1 (purple) binds the nucleosome at the dyad.



Nucleosome positioning

Translational positioning
- defined by the nucleosome midpoint (or dyad) with regard to the DNA sequence

- the DNA sequence patterns specifying translational nucleosome positioning are far from clear. The only well-
established feature is the tendency of long A/T-rich fragments, and the A-tracts in particular, to be excluded
from nucleosomes

- nucleosome positioning can be affected by DNA-binding transcription factors and chromatin remodeling
enzymes

Rotational positioning

- defined by the side of the DNA helix that faces the histones
- related to the sequence-dependent preferences for DNA deformation, e.g. bending:

In particular, the A/T-containing dimeric steps AA:TT, AT and TA preferentially occur where the DNA is bent
into the minor groove, while G/C-containing dimers GG:CC, GC and CG are frequently situated at the sites
where DNA is bent toward the major groove. The occurrences of AT and GC dimers in nucleosome core DNA
both display sinusoidal patterns with ~10-bp periodicity, but they are ~5 bp out of phase with one another.
These sequence patterns are observed in nucleosomal DNA from chicken, yeast, fruit fly, nematode and
human, indicating that the sequence rules for rotational positioning are essentially the same across species.



Nucleosome positioning code
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Local changes in nucleosome organization upon
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Nucleosome organization around the 5'-end of yeast genes. ( A ) Overlays of nucleosome occupancy profiles of 4792
S. cerevisiae genes ( 30 ) relative to TSS (position 0). Nucleosome occupancy values are either taken directly from
Kaplanetal. (29 ) (blue) or recalculated from Cole et al. (16, 27 ): 3AT set (green) and CC set (red), respectively. In
the latter two cases, the NCP fragments 147-152 bp in length were selected to calculate occupancy profiles.

( B ') Nucleosome occupancy map for 234 genes (out of 4792 genes) that are induced by 3AT by more than 2-fold ( 25).
Note that the occupancy value at each nucleotide is normalized by summing all the nucleosome sequences covering this
nucleotide and dividing that number by the average number of nucleosome sequences per base pair across the genome.



SRR data from NCBI

& https://www.ncbi.nlm.nih.gov/sra/SRX038810[accn]
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- Repr'ese ntative (genome information for reference and representative genomes)

Reference genome:
o [l Saccharomyces cerevisiae S288C

Submitter: Saccharomyces Genome Database
Loc Type Name RefSeq INSDC Size (Mb) GC% Protein rRNA tRNA  Other RNA  Gene Pseudogene
Chr | NC_001133.9 BKO06935.2 0.23 393 94 - 4 2 101 1

Chr I NC_001134.8 BKO0G936.2 [R5 38.3 415 - 13 4 432 -
Chr 1 NC_001135.5 BKO0G93T.2 03z 385 168 - 10 4 184 2
Chr v NC_001136.10 BKO0G936.2 153 379 766 - 28 4 799 1
Chr v NC_001137.3 BKO00G939.2 D5a 38.5 287 - 20 9 317 1
Al < t. Chr VI NC_001138.5 BKO00G940.2 nzar 38.7 128 - 10 4 143 1
’ lgnmen ° Chr Wil NC_001139.9 BKO0G941.2 109 38.1 539 - 36 10 585
Chr Wil NC_001140.6 BKO0GI34.2 056 385 290 - 11 4 305 -
Chr X NC_001141.2 BKO0G942.2 D44 389 213 - 10 3 232 &
R f o S h M M S 2 8 8 C Chr X NC_001142.9 BKO0G943.2 075 38.4 352 - 24 6 392 -
e e re n C e g e n O m e ° a C C a ro m yc e S C e rev I S I a e Chr Xl NC_001143.9 BKO0G944.2 DET 38.1 v - 16 5 338 -
Chr Xl NC_001144.5 BKO06945.2 108 385 519 12 21 18 572 2
( a S S e m b | R 6 4) Chr X NC_001145.3 BKO0G946.2 nsz 38.2 453 - 21 15 505 -
y Chr X NC_001146.8 BKO0G947.3 n7a 38.6 3a8 - 14 6 418 -
Chr XV NC_001147 6 BKO0G948.2 109 38.2 546 - 20 11 579 2

Aligner: BWA (BurrOWS-Wheeler Aligner) Chr vl r\c_:aonqa.q BKOOG949.2 085 ‘38.]_ -1‘?; - f? 6 497 2
Tool: Jupiter Notebook: Enviroment:Genomics

«| Chromosomes
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Click on chromosome name to open Genome Data Viewer

SAM Format (Sequence Alignment Map):

. Jupyter Logout || Control Panel TAAT
Files Running Clusters Conda
Select items to perform actions on them. Upload | New~- | &
0 ~ B®/ ncbi/ public/ sra Name 4 | Last Modified File size
0. HECHOMNBKO CEKYHA Hasas
(4 sSRR094649 1.fastg 2mecAya Hazan  5.01 GB
[ SRR094649 2 fastq 2 mecAua Hazan  5.01 GB
(4 sRR094650_1 fastqg 2mecAya Hazan  3.75 GB
[ SRA094650_2 fastq 2 mecAua Hazan 3.75 GB
[ SRR094651 fastq 2 MecAua Hasan 39GB
(4 sRR094651_2 fastg 2 MecfAla Hazan 3.9 GB
(9 SRA094652_1 fastq 2 mecAua Hazan  4.09 GB
(4 sRR094652 2 fastg 2mecAya Hazan  4.09 GB BRI FERRERIERER




¢ Quality check with FastQC

Per base sequence content: Sequence Duplication Levels:

Sequence content across all bases FPercent of seqs remaining if deduplicated 28.35%
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Sequence specificity in the digestion of double-stranded DNA by
micrococcal nuclease

'..it was concluded that thenuclease cleaves initially in AT-rich regions and it was sug-gested that this specificity
depended on the greater conforma-tional motility of such regions in the DNA...

Nucleic Acids Research Wolfram Horz, Werner Altenburger (1981):
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B TN T WUTPC U T generated DNA termini. GC-rich flanking sequences further
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Figure 3. Regions of preferential attack by micrococcal nuclease are initially cleaved by micrococcal nuclease. This specificity of

on mouse satellite DNA. The mouse satellite DNA repeat unit of

234 bp (8) is shown with the diester bonds cleaved by micrococcal q | | |' -t '-t 5 0 -t q -t d d
nuclesse (see Table 1} indicated by arrows. Thin arrows indicate m|Crococca nUC ease Comp ICa eS I S Use In expe”men S In en e
low level of cleavage. Sites determined by cleavage .of a micro-

coccal nuclease digests with Sau96I are indicated by—sewhile t -t t | t . t 't .

those derived from digestion of the Sau96I monomer with micro- O monl Or he nUC eopro eln S rUC Ure Of a DNA Seq Uence In

coccal nuclease are depicted as O—w . For details see text. The

analysis of the region adjacent to the Sau96I site is incomplete . n

since the wery short fragments expected to occur in the micro- Ch romatln.

coccal nuclease/Sau96l codigests were not analyzed. L and H de-

signate the light and heavy strand of the satellite DHA. S and R

denote the bonds cleaved by Sau%6I and EcoRII, respectively. The
L-strand (top) is 5'—=3', the complementary H-strand 3'—= 5",




* HTSeq: Analysing high-throughput sequencing data with Python

The various classes of HTSeq:
-Sequences and FASTA/FASTQ files

In order to represent sequences and reads (i.e., sequences with base-call quality information), the classes Sequence
and SequenceWithQualities are used. The classes FastaReader and FastqgReader allow to parse FASTA and FASTAQ files.

-Genomic intervals and genomic arrays
The classes Genomiclnterval and GenomicPosition represent intervals and positions in a genome. The class GenomicArray

Is an all-purpose container with easy access via a genomic inter-val or position, and GenomicArrayOfSets is a special case
useful to deal with genomic features (suchas genes, exons, etc.)

-Read alignments

To process the output from short read aligners in various formats (e.g., SAM), the classes described hereare used, to
represent output files and alignments, i.e., reads with their alignment information.

-Features
The classes GenomicFeature and GFF_Reader help to deal with genomic annotation data.
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¢ Length distribution

Tool: Jupiter Notebook

Python packages: HTSeq, pysam, matplotlib

NMumber of reads

Peak on 150 length both in CC and 3AT sets:
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¢ A/T and G/C patterns

Done on dataset of reads with length 147
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Conclusions

« Weak exonuclease activity of M Nase

« AT and GC sinusoidal patterns
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